Skip to content

harbor_cli.utils.args

Attributes

BaseModelType = TypeVar('BaseModelType', bound=BaseModel) module-attribute

Functions

model_params_from_ctx(ctx: typer.Context, model: Type[BaseModel], filter_none: bool = True) -> dict[str, Any]

Get CLI options from a Typer context that correspond with Pydantic model field names.

Given a command where the function parameter names match the model field names, the function returns a dict of the parameters that are valid for the model.

If filter_none is True, then parameters that are None will be filtered out. This is enabled by default, since most Harbor API model fields are optional, and we want to signal to Pydantic that these fields should be treated as unset rather than set to None.

Examples:

>>> from pydantic import BaseModel
>>> class Foo(BaseModel):
...     foo: str
...     bar: str
>>> foo = Foo(foo="foo", bar="bar")
>>> ctx = typer.Context(...) # some-cmd --bar grok --baz quux
>>> model_params_from_ctx(ctx, Foo)
{"bar": "grok"} # baz is not a valid field for Foo

Parameters:

Name Type Description Default
ctx Context

The Typer context.

required
model Type[BaseModel]

The model to get the parameters for.

required
filter_none bool

Whether to filter out None values, by default True

True

Returns:

Type Description
dict[str, Any]

The model parameters.

Source code in harbor_cli/utils/args.py
def model_params_from_ctx(
    ctx: typer.Context, model: Type[BaseModel], filter_none: bool = True
) -> dict[str, Any]:
    """Get CLI options from a Typer context that correspond with Pydantic
    model field names.

    Given a command where the function parameter names match the
    model field names, the function returns a dict of the parameters
    that are valid for the model.

    If `filter_none` is True, then parameters that are None will be filtered out.
    This is enabled by default, since most Harbor API model fields are optional,
    and we want to signal to Pydantic that these fields should be treated
    as *unset* rather than *set to None*.

    Examples
    --------
    >>> from pydantic import BaseModel
    >>> class Foo(BaseModel):
    ...     foo: str
    ...     bar: str
    >>> foo = Foo(foo="foo", bar="bar")
    >>> ctx = typer.Context(...) # some-cmd --bar grok --baz quux
    >>> model_params_from_ctx(ctx, Foo)
    {"bar": "grok"} # baz is not a valid field for Foo


    Parameters
    ----------
    ctx : typer.Context
        The Typer context.
    model : Type[BaseModel]
        The model to get the parameters for.
    filter_none : bool
        Whether to filter out None values, by default True

    Returns
    -------
    dict[str, Any]
        The model parameters.
    """
    return {
        key: value
        for key, value in ctx.params.items()
        if key in model.model_fields and (not filter_none or value is not None)
    }

create_updated_model(existing: BaseModel, new: Type[BaseModelType], ctx: typer.Context, extra: bool = False, empty_ok: bool = False) -> BaseModelType

Given an existing model instance and another model type, instantiate other model based on the fields of the existing model combined with CLI args passed in by the user.

When we call a PUT enpdoint, the API expects the full model definition, but we want to allow the user to only specify the fields they want to update. This function allows us to do that, by taking an existing model fetched via a GET call and updating it with new values from the Typer context.

To further complicate things, Harbor API generally uses a different model definition for updating resources (PUT) than the one fetched from a GET call. For example, fetching information about a project returns a Project object, while updating a project requires a ProjectUpdateReq object.

These models largely contain the same fields, but might have certain deviations. For example, the Project model has a creation_time field, while the ProjectUpdateReq model does not.

This function allows us to create, for example, a ProjectUpdateReq object from a combination of a Project object and CLI args that correspond with the fields of the ProjectUpdateReq model.

See model_params_from_ctx for more information on how the CLI context is used to provide the updated fields for the new model.

Examples:

>>> from pydantic import BaseModel
>>> class Foo(BaseModel):
...     a: Optional[int]
...     b: Optional[str]
...     c: Optional[bool]
>>> class FooUpdateReq(BaseModel):
...     a: Optional[int]
...     b: Optional[str]
...     c: Optional[bool]
...     d: bool = False
>>> foo = Foo(a=1, b="foo", c=True)
>>> # we get a ctx object from a Typer command
>>> ctx = typer.Context(...) # update-foo --a 2 --b bar
>>> foo_update = create_updated_model(foo, FooUpdateReq, ctx)
>>> foo_update
FooUpdateReq(a=2, b='bar', c=True, d=False)
>>> #        ^^^  ^^^^^^^
>>> # We created a FooUpdateReq with the new values from the context

Parameters:

Name Type Description Default
existing BaseModel

The existing model to use as a base.

required
new Type[BaseModelType]

The new model type to construct.

required
ctx Context

The Typer context to get the updated model parameters from.

required
extra bool

Whether to include extra fields set on the existing model.

False
empty_ok bool

Whether to allow the update to be empty. If False, an error will be raised if no parameters are provided to update.

False

Returns:

Type Description
BaseModelType

The updated model.

Source code in harbor_cli/utils/args.py
def create_updated_model(
    existing: BaseModel,
    new: Type[BaseModelType],
    ctx: typer.Context,
    extra: bool = False,
    empty_ok: bool = False,
) -> BaseModelType:
    """Given an existing model instance and another model type, instantiate
    other model based on the fields of the existing model combined with CLI args
    passed in by the user.

    When we call a PUT enpdoint, the API expects the full model definition,
    but we want to allow the user to only specify the fields they want to update.
    This function allows us to do that, by taking an existing model fetched via
    a GET call and updating it with new values from the Typer context.

    To further complicate things, Harbor API generally uses a different model
    definition for updating resources (PUT) than the one fetched from a GET call.
    For example, fetching information about a project returns a Project object,
    while updating a project requires a ProjectUpdateReq object.

    These models largely contain the same fields, but might have certain deviations.
    For example, the Project model has a `creation_time` field, while the
    ProjectUpdateReq model does not.

    This function allows us to create, for example, a ProjectUpdateReq object
    from a combination of a Project object and CLI args that correspond with
    the fields of the ProjectUpdateReq model.

    See [model_params_from_ctx][harbor_cli.utils.args.model_params_from_ctx]
    for more information on how the CLI context is used to provide the updated
    fields for the new model.

    Examples
    --------
    >>> from pydantic import BaseModel
    >>> class Foo(BaseModel):
    ...     a: Optional[int]
    ...     b: Optional[str]
    ...     c: Optional[bool]
    >>> class FooUpdateReq(BaseModel):
    ...     a: Optional[int]
    ...     b: Optional[str]
    ...     c: Optional[bool]
    ...     d: bool = False
    >>> foo = Foo(a=1, b="foo", c=True)
    >>> # we get a ctx object from a Typer command
    >>> ctx = typer.Context(...) # update-foo --a 2 --b bar
    >>> foo_update = create_updated_model(foo, FooUpdateReq, ctx)
    >>> foo_update
    FooUpdateReq(a=2, b='bar', c=True, d=False)
    >>> #        ^^^  ^^^^^^^
    >>> # We created a FooUpdateReq with the new values from the context

    Parameters
    ----------
    existing : BaseModel
        The existing model to use as a base.
    new : Type[BaseModelType]
        The new model type to construct.
    ctx : typer.Context
        The Typer context to get the updated model parameters from.
    extra : bool
        Whether to include extra fields set on the existing model.
    empty_ok: bool
        Whether to allow the update to be empty. If False, an error will be raised
        if no parameters are provided to update.

    Returns
    -------
    BaseModelType
        The updated model.
    """
    # Make sure ctx contains values we can update model with
    params = model_params_from_ctx(ctx, new)
    if not params and not empty_ok:
        exit_err("No parameters provided to update")

    # Cast existing model to dict, update it with the new values
    d = existing.model_dump(include=None if extra else set(new.model_fields))
    d.update(params)
    return new.model_validate(d)

parse_commalist(arg: Optional[List[str]]) -> List[str]

Parses an optional argument that can be specified multiple times, or as a comma-separated string, into a list of strings.

harbor subcmd --arg foo --arg bar,baz will be parsed as: ["foo", "bar", "baz"]

Examples:

>>> parse_commalist(["foo", "bar,baz"])
["foo", "bar", "baz"]
>>> parse_commalist([])
[]
>>> parse_commalist(None)
[]
Source code in harbor_cli/utils/args.py
def parse_commalist(arg: Optional[List[str]]) -> List[str]:
    """Parses an optional argument that can be specified multiple times,
    or as a comma-separated string, into a list of strings.

    `harbor subcmd --arg foo --arg bar,baz`
    will be parsed as: `["foo", "bar", "baz"]`

    Examples
    --------
    ```py
    >>> parse_commalist(["foo", "bar,baz"])
    ["foo", "bar", "baz"]
    >>> parse_commalist([])
    []
    >>> parse_commalist(None)
    []
    ```
    """
    if arg is None:
        return []
    return [item for arg_list in arg for item in arg_list.split(",")]

parse_commalist_int(arg: Optional[List[str]]) -> List[int]

Parses a comma-separated list and converts the values to integers.

Source code in harbor_cli/utils/args.py
def parse_commalist_int(arg: Optional[List[str]]) -> List[int]:
    """Parses a comma-separated list and converts the values to integers."""
    int_list: List[int] = []
    for item in parse_commalist(arg):
        try:
            int_list.append(int(item))
        except ValueError:
            raise ValueError(f"Invalid integer value: {item!r}")
    return int_list

parse_key_value_args(arg: list[str]) -> dict[str, str]

Parses a list of key=value arguments.

Examples:

>>> parse_key_value_args(["foo=bar", "baz=qux"])
{'foo': 'bar', 'baz': 'qux'}

Parameters:

Name Type Description Default
arg list[str]

A list of key=value arguments.

required

Returns:

Type Description
dict[str, str]

A dictionary mapping keys to values.

Source code in harbor_cli/utils/args.py
def parse_key_value_args(arg: list[str]) -> dict[str, str]:
    """Parses a list of key=value arguments.

    Examples
    --------
    >>> parse_key_value_args(["foo=bar", "baz=qux"])
    {'foo': 'bar', 'baz': 'qux'}

    Parameters
    ----------
    arg
        A list of key=value arguments.

    Returns
    -------
    dict[str, str]
        A dictionary mapping keys to values.
    """
    metadata: Dict[str, str] = {}
    for item in arg:
        try:
            key, value = item.split("=", maxsplit=1)
        except ValueError:
            raise typer.BadParameter(
                f"Invalid metadata item {item!r}. Expected format: key=value"
            )
        metadata[key] = value
    return metadata

as_query(**kwargs: Any) -> str

Converts keyword arguments into a query string.

Examples:

>>> as_query(foo="bar", baz="qux")
'foo=bar,baz=qux'
Source code in harbor_cli/utils/args.py
def as_query(**kwargs: Any) -> str:
    """Converts keyword arguments into a query string.

    Examples
    --------
    >>> as_query(foo="bar", baz="qux")
    'foo=bar,baz=qux'
    """
    return ",".join(f"{k}={v}" for k, v in kwargs.items())

construct_query_list(*values: Any, union: bool = True, allow_empty: bool = False, comma: bool = False) -> str

Given a key and a list of values, returns a harbor API query string with values as a list with union or intersection relationship (default: union).

Falsey values are ignored if allow_empty is False (default).

Examples:

>>> construct_query_list("foo", "bar", "baz", union=True)
'{foo bar baz}'
>>> construct_query_list("foo", "bar", "baz", union=False)
'(foo bar baz)'
>>> construct_query_list("", "bar", "baz")
'{bar baz}'
>>> construct_query_list("", "bar", "baz", allow_empty=True)
'{ bar baz}'
>>> construct_query_list("", "bar", "baz", comma=True)
'{bar,baz}'
Source code in harbor_cli/utils/args.py
def construct_query_list(
    *values: Any,
    union: bool = True,
    allow_empty: bool = False,
    comma: bool = False,
) -> str:
    """Given a key and a list of values, returns a harbor API
    query string with values as a list with union or intersection
    relationship (default: union).

    Falsey values are ignored if allow_empty is False (default).

    Examples
    --------
    >>> construct_query_list("foo", "bar", "baz", union=True)
    '{foo bar baz}'
    >>> construct_query_list("foo", "bar", "baz", union=False)
    '(foo bar baz)'
    >>> construct_query_list("", "bar", "baz")
    '{bar baz}'
    >>> construct_query_list("", "bar", "baz", allow_empty=True)
    '{ bar baz}'
    >>> construct_query_list("", "bar", "baz", comma=True)
    '{bar,baz}'
    """
    if len(values) < 2:
        return str(values[0] if values else "")
    start = "{" if union else "("
    end = "}" if union else ")"
    sep = "," if comma else " "
    return f"{start}{sep.join(str(v) for v in values if v or allow_empty)}{end}"

deconstruct_query_list(qlist: str) -> list[str]

Given a harbor API query string with values as a list (either union and intersection), returns a list of values. Will break if values contain spaces.

Examples:

>>> deconstruct_query_list("{foo bar baz}")
['foo', 'bar', 'baz']
>>> deconstruct_query_list("(foo bar baz)")
['foo', 'bar', 'baz']
>>> deconstruct_query_list("{}")
[]
Source code in harbor_cli/utils/args.py
def deconstruct_query_list(qlist: str) -> list[str]:
    """Given a harbor API query string with values as a list (either union
    and intersection), returns a list of values. Will break if values
    contain spaces.

    Examples
    --------
    >>> deconstruct_query_list("{foo bar baz}")
    ['foo', 'bar', 'baz']
    >>> deconstruct_query_list("(foo bar baz)")
    ['foo', 'bar', 'baz']
    >>> deconstruct_query_list("{}")
    []
    """
    # TODO: add comma support
    values = qlist.strip("{}()").split(" ")
    return [v for v in values if v]

add_to_query(query: str | None, **kwargs: str | list[str] | None) -> str

Given a query string and a set of keyword arguments, returns a new query string with the keyword arguments added to it. Keyword arguments that are already present in the query string will be overwritten.

Always returns a string, even if the resulting query string is empty.

TODO: allow fuzzy matching, e.g. foo=~bar

Examples:

>>> add_to_query("foo=bar", baz="qux")
'foo=bar,baz=qux'
>>> add_to_query("foo=bar", foo="baz")
'foo=baz'
>>> add_to_query(None, foo="baz")
'foo=baz'
>>> add_to_query("foo=foo", foo="bar")
'foo={foo bar}'
Source code in harbor_cli/utils/args.py
def add_to_query(query: str | None, **kwargs: str | list[str] | None) -> str:
    """Given a query string and a set of keyword arguments, returns a
    new query string with the keyword arguments added to it. Keyword
    arguments that are already present in the query string will be
    overwritten.

    Always returns a string, even if the resulting query string is empty.

    TODO: allow fuzzy matching, e.g. foo=~bar

    Examples
    --------
    >>> add_to_query("foo=bar", baz="qux")
    'foo=bar,baz=qux'
    >>> add_to_query("foo=bar", foo="baz")
    'foo=baz'
    >>> add_to_query(None, foo="baz")
    'foo=baz'
    >>> add_to_query("foo=foo", foo="bar")
    'foo={foo bar}'
    """
    query_items = parse_commalist([query] if query else [])
    query_dict = parse_key_value_args(query_items)
    for k, v in kwargs.items():
        # Empty string, empty list, None, etc. are all ignored
        if not v:
            continue

        # Remove empty list or otherwise absent value for key if exists
        query_val = query_dict.get(k, None)
        if query_val is not None and any(query_val.startswith(c) for c in ["{", "("]):
            # Query dict contains empty list (invalid), so we just remove it
            # TODO: respect union/intersection list type
            del query_dict[k]

        # When the query already has a value for the given key, we need to
        # convert the value to a list if isn't already one.
        if k in query_dict:
            if isinstance(v, list):
                query_dict[k] = construct_query_list(query_dict[k], *v)
            else:
                query_dict[k] = construct_query_list(
                    *deconstruct_query_list(query_dict[k]),
                    v,
                )
        else:  # doesn't exist in query
            if isinstance(v, str):
                query_dict[k] = v
            elif len(v) > 1:
                query_dict[k] = construct_query_list(*v)
            else:
                query_dict[k] = v[0]
    return as_query(**query_dict)

get_project_arg(project_name_or_id: str) -> str | int

Given a project name or ID argument (prefixed with 'id:'), return a project name (str) or project ID (int).

Source code in harbor_cli/utils/args.py
def get_project_arg(project_name_or_id: str) -> str | int:
    """Given a project name or ID argument (prefixed with 'id:'),
    return a project name (str) or project ID (int).
    """
    return _get_id_name_arg("project", project_name_or_id)

get_user_arg(username_or_id: str) -> str | int

Given a username or ID argument (prefixed with 'id:'), return a username (str) or user ID (int).

Source code in harbor_cli/utils/args.py
def get_user_arg(username_or_id: str) -> str | int:
    """Given a username or ID argument (prefixed with 'id:'),
    return a username (str) or user ID (int).
    """
    return _get_id_name_arg("user", username_or_id)

get_ldap_group_arg(group_dn_or_id: str) -> str | int

Source code in harbor_cli/utils/args.py
def get_ldap_group_arg(group_dn_or_id: str) -> str | int:
    return _get_id_name_arg("LDAP Group", group_dn_or_id)